Respuesta :

9514 1404 393

Answer:

  [tex]\dfrac{\sqrt[4]{3x^2}}{2y}[/tex]

Step-by-step explanation:

Fourth powers (and multiples of 4th powers) can be factored out from under the radical. Everything else remains under the radical.

  [tex]\sqrt[4]{\dfrac{24x^6y}{128x^4y^5}}=\left(\dfrac{3\cdot8}{16\cdot8}x^{6-4}y^{1-5}\right)^{1/4}=(3\cdot2^{-4}x^{2}y^{-4})^{1/4}\\\\=\boxed{\dfrac{\sqrt[4]{3x^2}}{2y}}[/tex]

_____

The applicable rules of exponents are ...

  a^(b/c) = c-th root of (a^b)

  (a^b)(a^c) = a^(b+c)

  (a^b)^c = a^(bc)

  a^-b = 1/a^b

Answer:

Step-by-step explanation:

the answer is (D) [tex]\sqrt[4]{3x^2}[/tex] / 2y