Answer:
The 95% confidence interval for the average number of years until the first major repair is (3.1, 3.5).
Step-by-step explanation:
The (1 - α)% confidence interval for the average using the finite correction factor is:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}[/tex]
The information provided is:
[tex]N=1500\\n=183\\\sigma=1.47\\\bar x=3.3[/tex]
The critical value of z for 95% confidence level is,
z = 1.96
Compute the 95% confidence interval for the average number of years until the first major repair as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}[/tex]
[tex]=3.3\pm 1.96\times\frac{1.47}{\sqrt{183}}\times\sqrt{\frac{1500-183}{1500-1}}\\\\=3.3\pm 0.19964\\\\=(3.10036, 3.49964)\\\\\approx (3.1, 3.5)[/tex]
Thus, the 95% confidence interval for the average number of years until the first major repair is (3.1, 3.5).