Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

First we need to find the distance between two points which is the diameter of the circle .

_________________________________

Suppose :

a = ( - 4 , 8 )

b = ( 4 , - 4 )

We have following equation to find the distance between two points.

[tex]distance = diameter = d[/tex]

[tex]d = \sqrt{ ( \: {y(b) - y(a)} \: )^{2} + ( \: {x(b) - x(a)} \: )^{2} } \\ [/tex]

Now just need to put the coordinates :

[tex]d = \sqrt{ ({ - 4 - 8})^{2} + ( \: {4 - ( - 4)} \: )^{2} } \\ [/tex]

[tex]d = \sqrt{ ({ - 12})^{2} + ({4 + 4})^{2} } [/tex]

[tex]d = \sqrt{ ({ - 12})^{2} + ({8})^{2} } [/tex]

[tex]d = \sqrt{144 + 64} [/tex]

[tex]d = \sqrt{208} [/tex]

[tex]d = \sqrt{4 \times 52} [/tex]

[tex]d = \sqrt{4 \times 4 \times 13} [/tex]

[tex]d = \sqrt{ {4}^{2} \times 13 } [/tex]

[tex]d = 4 \sqrt{13} [/tex]

This is the diameter of the circle.

We know that :

[tex]diameter = 2 \times radius[/tex]

So :

[tex]4 \sqrt{13} = 2 \times radius[/tex]

Divide sides by 2

[tex] \frac{4 \sqrt{13} }{2} = \frac{2 \times radius}{2} \\ [/tex]

[tex]2 \sqrt{13} = radius[/tex]

Remember it.

_________________________________

To find the equation of the circle except the radius , we need the coordinates of the centre.

The midpoint of the diameter is the centre of the circle .

So we have to find the midpoint of the diameter .

Look :

[tex]midpoint = center = o[/tex]

[tex]o = ( \: \frac{x(a) + x(b)}{2} \: , \: \frac{y(a) + y(b)}{2} \: ) \\ [/tex]

[tex]o = ( \: \frac{ - 4 + 4}{2} \: , \: \frac{8 - 4}{2} ) \\ [/tex]

[tex]o = ( \: \frac{0}{2} \: , \: \frac{4}{2} \: ) \\ [/tex]

[tex]o = ( \: 0 \: , \: 2 \: )[/tex]

This the coordinates of the centre.

_________________________________

Equation of the circle has a form like this :

[tex]( {x - m})^{2} + ({y - n})^{2} = {r}^{2} [/tex]

In which :

[tex]m = x - coordinate \: \: of \: \: the \: \: center \\ [/tex]

[tex]n = y - coordinate \: \: of \: \: the \: \: center \\ [/tex]

[tex]r = radius[/tex]

_________________________________

[tex]o = ( \: 0 \: , \: 2 \: )[/tex]

[tex]radius = 2 \sqrt{13} [/tex]

Thus :

[tex] ({x - 0})^{2} + ({y - 2})^{2} = ({2 \sqrt{13} })^{2} \\ [/tex]

[tex] {x}^{2} + ({y - 2})^{2} = 4 \times 13[/tex]

[tex] {x}^{2} + ({y - 2})^{2} = 52 [/tex]

This is the equation of the circle .

And we're done....

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️