Two complex numbers have a product of 30 and positive integers as real parts. Write all possible combinations of such numbers.

Respuesta :

Answer:

[tex][(1+i\sqrt{29}), (1-i\sqrt{29})][/tex], [tex][(1+i\sqrt{26}), (1-i\sqrt{26})][/tex], [tex][(1+i\sqrt{21}), (1-i\sqrt{21})][/tex],

[tex][(1+i\sqrt{14}), (1-i\sqrt{14})][/tex], and [tex][(1+i\sqrt{5}), (1-i\sqrt{5})][/tex].

Step-by-step explanation:

Given that two complex numbers have a product of 30 and the real part of the complex numbers are positive integers.

Let one complex number is [tex]a+ib[/tex] where [tex]a[/tex] is a positive integer and [tex]b[/tex] is a real number.

As the product of two complex numbers is a purely real number, so the other complex number must be the conjugate of the first complex number.

So, another complex number [tex]= a-ib[/tex]

As a product of both the numbers = 30

[tex]\Rightarrow (a+ib)(a-ib)=30 \\\\\Rightarroe a^2 - (ib)^2=30 \\\\\Rightarrow a^2 - (i^2b^2)=30 \\\\Rightarrow a^2 - (-1\times b^2)= 30[/tex] [as i^2=-1]

[tex]\Rightarrow a^2+b^2= 30 \\\\\Rightarrow b^2 = 30-a^2 \\\\[/tex]

[tex]\Rightarrow b=\pm \sqrt {30-a^2} \cdots(i)[/tex]

Now, as a is a positive integer, so by taking possible values of a, we can determine the values of b from the equation (i).

For [tex]a=1[/tex]

[tex]b=\pm \sqrt {30-1^2}=\pm \sqrt {29}[/tex]

The positive sign is for the one number and the negative sign is for the conjugate number (another number).

So, the 1st combination is [tex][(1+i\sqrt{29}), (1-i\sqrt{29})][/tex]

Similarly,

For [tex]a=2[/tex]

[tex]b=\pm \sqrt {30-2^2}=\pm \sqrt {26}[/tex]

So, the 2nd combination is [tex][(1+i\sqrt{26}), (1-i\sqrt{26})][/tex]

For [tex]a=3[/tex]

[tex]b=\pm \sqrt {30-3^2}=\pm \sqrt {21}[/tex]

So, the 3rd combination is [tex][(1+i\sqrt{21}), (1-i\sqrt{21})][/tex]

For [tex]a=4[/tex]

[tex]b=\pm \sqrt {30-4^2}=\pm \sqrt {14}[/tex]

So, the 4th combination is [tex][(1+i\sqrt{14}), (1-i\sqrt{14})][/tex]

For [tex]a=5[/tex]

[tex]b=\pm \sqrt {30-5^2}=\pm \sqrt {5}[/tex]

So, the 5th combination is [tex][(1+i\sqrt{5}), (1-i\sqrt{5})][/tex]

The higher integral value of [tex]a[/tex] is not possible for any real [tex]b[/tex].

Hence, the possible combinations of required numbers are

[tex][(1+i\sqrt{29}), (1-i\sqrt{29})][/tex], [tex][(1+i\sqrt{26}), (1-i\sqrt{26})][/tex], [tex][(1+i\sqrt{21}), (1-i\sqrt{21})][/tex],

[tex][(1+i\sqrt{14}), (1-i\sqrt{14})][/tex], and [tex][(1+i\sqrt{5}), (1-i\sqrt{5})][/tex].