Answer:
The force needed to launch the projectile is 150000 N.
Explanation:
We can find the force using the following equation:
[tex] F = ma [/tex]
Where:
m: is the mass = 15 kg
a: is the acceleration
First, we need to find the acceleration of the projectile:
[tex] v_{f}^{2} = v_{0}^{2} + 2ax [/tex]
Where:
[tex]v_{f}[/tex]: is the final speed
[tex]v_{0}[/tex]: is the initial speed = 0
x: is the distance = 2 m
The final speed is:
[tex]v_{f} = \frac{1 km}{5 s}*\frac{1000 m}{1 km} = 200 m/s[/tex]
Then, the acceleration is:
[tex]a = \frac{v_{f}^{2}}{2x} = \frac{(200 m/s)^{2}}{2*2 m} = 10000 m/s^{2}[/tex]
Finally, the force is:
[tex]F = ma = 15 kg*10000 m/s^{2} = 150000 N[/tex]
Therefore, the force needed to launch the projectile is 150000 N.
I hope it helps you!