Respuesta :
The value of the expression [tex](\frac{3^{2}a^{-2} }{3a^{-1} } )^{k}[/tex] when a = 5 and k = -2 is [tex]\frac{25}{9}[/tex]
How to substitute and get the value of an expression?
The expression is as follows:
[tex](\frac{3^{2}a^{-2} }{3a^{-1} } )^{k}[/tex]
using law of indices
Hence,
when a = 5, k = -2
[tex](\frac{3^{2}a^{-2} }{3a^{-1} } )^{k} = (\frac{9(5^{-2} )}{3(5^{-1} )})^{-2}[/tex]
Then,
[tex](\frac{9(5^{-2} )}{3(5^{-1} )})^{-2}=(\frac{\frac{9}{25} }{\frac{3}{5} } )^{-2}[/tex]
[tex](\frac{\frac{9}{25} }{\frac{3}{5} } )^{-2}=(\frac{9}{25} (\frac{5}{3}))^{-2}[/tex]
[tex](\frac{9}{25} (\frac{5}{3}))^{-2}=(\frac{3}{5})^{-2}[/tex]
[tex](\frac{3}{5})^{-2}=\frac{25}{9}[/tex]
Therefore, the value of the expression is 25 / 9
learn more on expression here:https://brainly.com/question/12879207
#SPJ5
