Respuesta :

Given:

The equations of parabolas in the options.

To find:

The steepest parabola.

Solution:

We know that, if a parabola is defined as

[tex](y-k)=n(x-h)^2[/tex]

Then, the greater absolute value of n, the steeper the parabola.

It can be written as

[tex]\dfrac{1}{n}(y-k)=(x-h)^2[/tex]

[tex]p(y-k)=(x-h)^2[/tex]

where [tex]p=\dfrac{1}{n}[/tex], the smaller absolute value of p, the steeper the parabola.

Now, find the value of |p| for eac equation

For option A, [tex]|-0.5|=0.5[/tex]

For option B, [tex]|5|=5[/tex]

For option C, [tex]|8|=8[/tex]

For option D, [tex]|-10|=10[/tex]

Since, the equation is option A has smallest value of |p|, therefore, the equation [tex](x+2)^2=-0.5(y+3)[/tex] represents the steepest parabola.

Hence, the correct option is A.