Una curva de radio R = 75 [m] tiene un peralte hecho de tal forma que un auto andando a v1 = 35 [m/s] no derrape incluso con el piso congelado (sin roce). ¿Cuál es el coeficiente de roce estático mínimo necesario entre las ruedas y el pavimento para que, en un día seco y soleado, el auto no derrape cuando avanza a v2 = 118 [m/s]?

Respuesta :

Answer:

053.

Explanation:

Given that the radius of curvature of the path, R = 75 m.

Speed of the car on that path , [tex]v_1 = 35 m/s[/tex]

The centripetal force,[tex]F_c[/tex] acting on the body having mass, m, when it moves with the velocity v  on curved path having radiusR

Ris[tex]F_c = mv^2/R[/tex]

Gravitational force, [tex]F_g[/tex] = mg.

Let tha angle of superelevation is [tex]\theta.[/tex]

As the car does not skid even with zero friction, so

[tex]mg\sin\theta = (mv_1^2)/2 \cos\theta[/tex]

[tex]\Rightarrow \tan\theta = v_1^2/2g=\cdots(i)[/tex]

On sunny day, let the minimun static friction coefficient between the wheels and the pavement is [tex]\mu.[/tex]  

As [tex]v_2[/tex] = 118 m/s is greater than   v_so the car tends to skid in upper direction and the frictional

force,f, will acts is downward direction.

As there is no skidding, so

[tex]f+ mg\sin\theta= (m(v_2)^2)/R\cos\theta[/tex]

[tex]\Rightarrow f=(m(v_2)^2)/R\cos\theta - mg\sin\theta[/tex]

where [tex]f= \mu N.[/tex]

[tex]So, \mu = \frac {(m(v_2)^2)/R\cos\theta - mg\sin\theta}{N} \cdots(ii)[/tex]

Where N is the normal reaction can be determined by balancing the force in perpendicular direction of the plane.

[tex]N= mg\cos\theta+\frac {m(v_2)^2}{R}\sin\theta[/tex]

From equation (ii)

[tex]\mu = \frac {(m(v_2)^2)/R\cos\theta - mg\sin\theta}{mg\cos\theta+\frac {m(v_2)^2}{R}\sin\theta}[/tex]

[tex]=\frac{-g\tan\theta+v^2/R}{v_2^2\tan\theta+g}[/tex]

[tex]= \frac {(m(v_2)^2)/R\cos\theta - mg\sin\theta}{mg\cos\theta+\frac {m(v_2)^2}{R}\sin\theta}[/tex]

[tex]=\frac{-g(v_1^2/2g)+v^2/R}{v_2^2(v_1^2/2g)+g}[/tex]

[tex]= \frac{v_2^2/R-v_1^2/R}{g+v_2^2/R\times v_1^2/Rg}[/tex]

[tex]=\frac{118^2/75-35^2/75}{9.81+118^2/75\times 35^2/(75\times 9.81)}[/tex]

=0.53

Hence, the minimum coefficient of friction is 0.53.