Find the length and width (in feet) of a rectangle that has the given area and a minimum perimeter.Area: 49 square feet ft (smaller value) ft (larger value)

Respuesta :

Answer:

Length = 7 ft

Breadth = 7 ft

Step-by-step explanation:

Let lenght of rectangle be x

and breadth be y

Area = [tex]49\ \text{ft}^2[/tex]

[tex]xy=49\\\Rightarrow x=\dfrac{49}{y}[/tex]

Permiter of a rectangle is given by

[tex]P=2(x+y)\\\Rightarrow P=2x+2y\\\Rightarrow P=2\times\dfrac{49}{y}+2y\\\Rightarrow P=\dfrac{98}{y}+2y[/tex]

Differentiating with respect to y we get

[tex]\dfrac{dP}{dy}=-\dfrac{98}{y^2}+2[/tex]

Equating with zero

[tex]0=-\dfrac{98}{y^2}+2\\\Rightarrow -2=-\dfrac{98}{y^2}\\\Rightarrow y^2=\dfrac{98}{2}\\\Rightarrow y^2=49\\\Rightarrow y=7[/tex]

Double derivative of the equation

[tex]\dfrac{d^2P}{dy^2}=2\dfrac{98}{y^3}\\\Rightarrow \dfrac{d^2P}{dy^2}=\dfrac{196}{y^3}>0[/tex]

So the value of y is minimum at 7.

[tex]x=\dfrac{49}{y}=\dfrac{49}{7}\\\Rightarrow x=7[/tex]

Hence, [tex]x=7,y=7[/tex]

The mimimum length and breadth of the rectangle is both 7 ft.