Answer:
Approximately [tex]35.2\; \rm m[/tex].
Explanation:
Given:
Initial velocity: [tex]u = 13\; \rm m \cdot s^{-1}[/tex].
Acceleration: [tex]a = -2.40\; \rm m \cdot s^{-2}[/tex] (negative because the car is slowing down.)
Implied:
Final velocity: [tex]v = 0\; \rm m \cdot s^{-1}[/tex] (because the car would come to a stop.)
Required:
Displacement, [tex]x[/tex].
Not required:
Time taken, [tex]t[/tex].
Because the time taken for this car to come to a full stop is not required, apply the SUVAT equation that does not involve time:
[tex]\begin{aligned} x &= \frac{v^2 - u^2}{2\, a} \\ &= \frac{{\left(0\; \rm m \cdot s^{-1}\right)}^2 - {\left(13\; \rm m \cdot s^{-1}\right)}^2}{2\times \left(-2.40\; \rm m\cdot s^{-2}\right)} \approx 35.2\; \rm m \end{aligned}[/tex].
In other words, this car would travel approximately [tex]35.2\; \rm m[/tex] before coming to a stop.