Respuesta :

Answer:

[tex]k = 9[/tex]

Step-by-step explanation:

Given:

Consecutive Terms:  k-5, k+7, k+55

Required:

Determine the value of k

To do this, we make use of the concept of common ratio.

The common ratio (r) of a geometric sequence is:

[tex]r = \frac{T_{n}}{T_{n-1}}[/tex]

In other words:

[tex]r = \frac{T_3}{T_2} = \frac{T_2}{T_1}[/tex]

Where 1, 2 and 3 represents the terms of the progression/sequence

So:

[tex]r = \frac{T_3}{T_2} = \frac{T_2}{T_1}[/tex] becomes

[tex]\frac{k+55}{k+7} = \frac{k+7}{k-5}[/tex]

Cross Multiply:

[tex](k+55)(k-5) = (k+7)(k+7)[/tex]

Open Brackets

[tex]k^2 + 55k - 5k - 275 = k^2 + 7k + 7k + 49[/tex]

[tex]k^2 + 50k- 275 = k^2 + 14k + 49[/tex]

Collect Like Terms

[tex]k^2 - k^2 + 50k-14k = 275 + 49[/tex]

[tex]36k = 324[/tex]

Solve for k

[tex]k = 324/36[/tex]

[tex]k = 9[/tex]