Respuesta :
Answer:
(x1,y1) = (1, 2)
(x2,y2) = (-1,0)
Step-by-step explanation:
Given: f(x) = x²(x + 1) and g(x) = x + 1
To find the intersection, then set functions equal to each other to solve for x first.
x²(x + 1) = x + 1; divide by (x+1) from both sides
[tex]x^{2}[/tex] = 1; take the square root to both sides
x = ±1;
The graphs intersect at two points (x1,y1) and (x2,y2)
Use x=1
f(1) = x²(x + 1) = [tex]1^{2}[/tex](1+1) = 2
g(1) = x + 1 = 1 + 1 = 2
(x1,y1) = (1, 2)
Use x= -1
f(-1) = x²(x + 1) = [tex](-1)^{2}[/tex](-1+1) = 0
g(-1) = x + 1 = -1 + 1 = 0
(x2,y2) = (-1,0)
The points of intersection of two functions are required.
The points of intersection are [tex](-1,0)[/tex] and [tex](1,2)[/tex].
The given functions are
[tex]f(x)=x^2(x+1)[/tex]
[tex]g(x)=x+1[/tex]
Equating them with each other
[tex]x^2(x+1)=x+1\\\Rightarrow x^2=\dfrac{x+1}{x+1}\\\Rightarrow x^2=1\\\Rightarrow x=\pm 1[/tex]
Substitute the [tex]x[/tex] value in one of the functions.
[tex]x=1[/tex]
[tex]f(1)=1(1+1)=2[/tex]
[tex](1,2)[/tex]
[tex]x=-1[/tex]
[tex]f(-1)=(-1)^2(-1+1)=0[/tex]
[tex](-1,0)[/tex]
The points of intersection are [tex](-1,0)[/tex] and [tex](1,2)[/tex].
Learn more:
https://brainly.com/question/16276433
https://brainly.com/question/11604425
