Respuesta :

Explanation:

Hey there!

Given;

Mass of the Earth (M) = 6.0*10^24kg.

Radius of Earth (R) = 6400km = 6400*1000= 6.4*10^6.

Gravitational constant (G) = 6.67*10^-11Nm^2/kg^2.

Height from surface of Earth (h) = 350km= 3.5*10^5m

Gravity (g) = ?

We have;

[tex]g = \frac{G.M}{ {(R + h)}^{2} } [/tex]

Where "G" is gravitational constant, "M" is mass of earth, "g" is acceleration due to gravity, "h" height from surface of Earth.

Keep all values.

[tex]g = \frac{6.67 \times {10}^{ - 11} \times 6.0 \times {10}^{24} }{ (6.4 \times {10}^{6} + 3.5 \times {10}^{5} )^2} [/tex]

[tex]or \: g = \frac{40.002\times {10}^{13} }{ (6.4\times {10}^{6} + 3.5*10^5)^2} [/tex]

g = 8.7m/s^2

Therefore, gravity from distance 350km above the Earth's surface is 8.7m/s^2.

Hope it helps...