Which expression is equivalent to StartFraction b Superscript negative 2 Baseline Over a b Superscript negative 3 Baseline EndFraction? Assume a not-equals 0, b not-equals 0.
StartFraction a Over b Superscript 5 Baseline
StartFraction 1 Over a b Superscript 5 Baseline Endfraction
StartFraction a cubed b Over 1 EndFraction
StartFraction b Over a EndFraction

Which expression is equivalent to StartFraction b Superscript negative 2 Baseline Over a b Superscript negative 3 Baseline EndFraction Assume a notequals 0 b no class=

Respuesta :

Answer:

D. [tex] = \frac{b}{a} [/tex]

Step-by-step explanation:

Given:

[tex] \frac{b^{-2}}{ab^{-3}} [/tex]

Required:

Assuming a ≠ 0, b ≠ 0, find the expression equivalent to the given expression.

SOLUTION:

[tex] \frac{b^{-2}}{ab^{-3}} [/tex]

Recall the exponent rule =>  [tex] \frac{x^{a}}{x^{b}} = x^{a - b} [/tex]

Applying the exponent rule, we would have:

[tex] \frac{b^{-2 -(-3)}}{a} [/tex]

[tex] = \frac{b^{-2 + 3}}{a} [/tex]

[tex] = \frac{b^{1}}{a} [/tex]

[tex] = \frac{b}{a} [/tex]

Thus, the equivalent expression of [tex] \frac{b^{-2}}{ab^{-3}} [/tex] = [tex] \frac{b}{a} [/tex]

Answer:

d

Step-by-step explanation: