Respuesta :

Answer:

Correct answer: a) -8

Step-by-step explanation:

Complex Numbers

A complex number z in polar form is expressed as

[tex]z=r(\cos\theta+\mathbf{i}\sin\theta)[/tex]

The nth power of a complex number in polar form is:

[tex]z^n=r^n(\cos(n\theta)+\mathbf{i}\sin(n\theta))[/tex]

If the complex number is given in rectangular form

[tex]z=x+\mathbf{i}y[/tex]

then the values of r and θ are given by:

[tex]r=\sqrt{x^2+y^2}[/tex]

[tex]\displaystyle \theta=\arctan\left(\frac{y}{x}\right)[/tex]

The given complex number is:

[tex]z=1-\mathbf{i}\sqrt{3}[/tex]

The value of r is:

[tex]r=\sqrt{1^2+(-\sqrt{3})^2}[/tex]

[tex]r=\sqrt{1+3}=2[/tex]

r=2

Calculating the angle:

[tex]\displaystyle \theta=\arctan\left(\frac{-\sqrt{3}}{1}\right)[/tex]

[tex]\displaystyle \theta=\arctan(-\sqrt{3})[/tex]

Since the number is in the quadrant IV, the angle is:

[tex]\theta=-60^\circ[/tex]

Thus, z is expressed in polar form as:

[tex]z=2(\cos(-60^\circ)+\mathbf{i}\sin(-60^\circ))[/tex]

Calculating:

[tex]z^3=2^3(\cos(-180^\circ)+\mathbf{i}\sin(-180^\circ))[/tex]

Given cos 180°=-1 and sin(-180°)=0

[tex]z^3=8(-1+0)[/tex]

[tex]z^3=-8[/tex]

Correct answer: a) -8

Answer:

A

Step-by-step explanation:

just finished test