Respuesta :

Answer:

In photo below

Explanation:

In photo below

I hope this helps

Ver imagen websitetechie

The inverse function of f(x) is:

[tex]g(x) = \sqrt[3]{(x +1)/64}[/tex]

How to find the inverse function?

Here we have the function:

[tex]f(x) = 64*x^3 -1[/tex]

We want to find the inverse, we will say that is of the form:

[tex]g(x) = \sqrt[3]{a*x + b}[/tex]

If we evaluate f(x) on g(x), we get:

[tex]f(g(x)) = 64*(\sqrt[3]{ax + b})^3 - 1\\ \\f(g(x)) = 64*(ax + b) - 1[/tex]

If these are inverses, that must be equal to x:

[tex]64*(ax + b) - 1 = x\\\\64*a*x + 64*b - 1 = x\\[/tex]

Then:

64*a = 1

a = 1/64

64*b - 1 = 0

b = 1/64

So the inverse function is:

[tex]g(x) = \sqrt[3]{(x +1)/64}[/tex]

If you want to learn more about inverse functions:

https://brainly.com/question/14391067

#SPJ2