A box of mass 60 kg is at rest on a horizontal floor that has a static coefficient of friction of 0.6 and a kinetic coefficient of 0.25
a)The minimum force necessary to start moving the box
b) The friction force and the acceleration of the box if a horizontal force of 400 N is applied

Respuesta :

Answer:

a) F = 353.2 N

b) [tex]F_{f} = 147.2 N [/tex]

   a = 4.21 m/s²

Explanation:

a) The minimum force necessary to start moving the box s given by:       

[tex]\Sigma F = 0[/tex]

[tex] F - \mu_{s}N = 0 [/tex]

[tex] F = \mu_{s}mg [/tex]

Where:

F: is the force applied to move the box

μs: is the static coefficient of friction = 0.6          

m: is the mass = 60 kg

g: is the gravity = 9.81 m/s²

[tex] F = 0.6*60 kg*9.81 m/s^{2} = 353.2 N [/tex]

b) The acceleration is:

[tex] F - F_{f} = ma [/tex]

[tex] F - \mu_{k}mg = ma [/tex]              

[tex] a = \frac{F - \mu_{k}mg}{m} = \frac{400 N - 0.25*60 kg*9.81 m/s^{2}}{60 kg} = 4.21 m/s^{2} [/tex]

Now, the friction force is:

[tex] F_{f} = \mu_{k}mg = 0.25*60 kg*9.81 m/s^{2} = 147.2 N [/tex]

I hope it helps you!