Use spherical coordinates. Find the volume of the solid that lies within the sphere x^2 + y^2 + z^2 = 81, above the xy-plane, and below the cone z = x^2 + y^2.

Respuesta :

Answer:

The volume of the solid is 243[tex]\sqrt{2} \ \pi[/tex]

Step-by-step explanation:

From the information given:

BY applying sphere coordinates:

0 ≤ x² + y² + z² ≤ 81

0  ≤ ρ²   ≤   81

0  ≤ ρ   ≤  9

The intersection that takes place in the sphere and the cone is:

[tex]x^2 +y^2 ( \sqrt{x^2 +y^2 })^2 = 81[/tex]

[tex]2(x^2 + y^2) =81[/tex]

[tex]x^2 +y^2 = \dfrac{81}{2}[/tex]

Thus; the region bounded is: 0 ≤ θ ≤ 2π

This implies that:

[tex]z = \sqrt{x^2+y^2}[/tex]

ρcosФ = ρsinФ

tanФ = 1

Ф = π/4

Similarly; in the X-Y plane;

z = 0

ρcosФ = 0

cosФ = 0

Ф = π/2

So here; [tex]\dfrac{\pi}{4} \leq \phi \le \dfrac{\pi}{2}[/tex]

Thus, volume: [tex]V = \iiint_E \ d V = \int \limits^{\pi/2}_{\pi/4} \int \limits ^{2\pi}_{0} \int \limits^9_0 \rho ^2 \ sin \phi \ d\rho \ d \theta \ d \phi[/tex]

[tex]V = \int \limits^{\pi/2}_{\pi/4} \ sin \phi \ d \phi \int \limits ^{2\pi}_{0} d \theta \int \limits^9_0 \rho ^2 d\rho[/tex]

[tex]V = \bigg [-cos \phi \bigg]^{\pi/2}_{\pi/4} \bigg [\theta \bigg]^{2 \pi}_{0} \bigg [\dfrac{\rho^3}{3} \bigg ]^{9}_{0}[/tex]

[tex]V = [ -0+ \dfrac{1}{\sqrt{2}}][2 \pi -0] [\dfrac{9^3}{3}- 0 ][/tex]

V = 243[tex]\sqrt{2} \ \pi[/tex]