Answer:
[tex]\sqrt{13}[/tex]
Step-by-step explanation:
we can solve this using the distance formula: [tex]\sqrt{(x_{2}-x_1)^{2} + (y_{2}-y_1)^{2}}[/tex]
[tex]x_1, y_1[/tex] is (3, 1)
[tex]x_2, y_2[/tex] is (-1, -2)
[tex]\sqrt{(1-3)^2 + (-2-1)^2}[/tex]
which simplifies to: [tex]\sqrt{(-2)^2 + (-3)^2}[/tex]
then: [tex]\sqrt{2^2 + 3^2}[/tex] or: [tex]\sqrt{4+9}[/tex]
your final answer is: [tex]\sqrt{13}[/tex] or about 3.61