Respuesta :
Answer:
$69.21
Step-by-step explanation:
Since the box has a square base the length and breadth of the box will be equal. Let it be [tex]x[/tex]
Let h be the height of the box
V = Volume of the box = [tex]620\ \text{cm}^3[/tex]
[tex]x^2h=620\\\Rightarrow h=\dfrac{620}{x^2}[/tex]
Now surface area of the box with an open top is given
[tex]s=x^2+4xh\\\Rightarrow s=x^2+4x\dfrac{620}{x^2}\\\Rightarrow s=x^2+\dfrac{2480}{x}[/tex]
Differentiating with respect to x we get
[tex]\dfrac{ds}{dx}=2x-\dfrac{2480}{x^2}[/tex]
Equating with zero
[tex]0=2x-\dfrac{2480}{x^2}\\\Rightarrow 2x^3-2480=0\\\Rightarrow x^3=\dfrac{2480}{2}\\\Rightarrow x=(1240)^{\dfrac{1}{3}}\\\Rightarrow x=10.74[/tex]
Double derivative of the function
[tex]\dfrac{d^2s}{ds^2}=2+\dfrac{4960}{x^3}=2+\dfrac{4960}{1240}\\\Rightarrow \dfrac{d^2s}{ds^2}=6>0[/tex]
So, x at 10.74 is the minimum value of the function.
[tex]h=\dfrac{620}{x^2}\\\Rightarrow h=\dfrac{620}{10.74^2}\\\Rightarrow h=5.37[/tex]
So, minimum length and breadth of the box is 10.74 cm while the height of the box is 5.37 cm.
The total area of the sides is [tex]4xh=4\times 10.74\times 5.37=230.7\ \text{cm}^2[/tex]
The area of the base is [tex]x^2=10.74^2=115.35\ \text{cm}^2[/tex]
Cost of the base is $0.40 per square cm
Cost of the side is $0.10 per square cm
Minimum cost would be
[tex]230.7\times 0.1+0.4\times 115.34=\$69.21[/tex]
The minimum cost of the box is 69.21 dollars.