Answer:
See below
Step-by-step explanation:
[tex]( \sin \theta - \cos \theta)( \sin \theta + \cos \theta) = 1 - 2 { \cos}^{2} \theta \\ \\ LHS = ( \sin \theta - \cos \theta)( \sin \theta + \cos \theta) \\ \\ = \sin^{2} \theta - \cos^{2} \theta \\ \\ =1 - \cos^{2} \theta - \cos^{2} \theta \\( \because \sin^{2} \theta =1 - \cos^{2} \theta) \\ \\ = 1 - 2 { \cos}^{2} \theta \\ = RHS[/tex]
Thus proved