If P is the orthocenter of △ABC, AB = 13, BF = 9,and FC = 5.6, find each measure & the perimeter of triangle ABC.

Answer:
[tex]Perimeter = 38.6[/tex]
Step-by-step explanation:
Given
[tex]A\ B = 13[/tex]
[tex]B\ F = 9[/tex]
[tex]F\ C = 5.6[/tex]
Required
Calculate the perimeter of A B C
To calculate the perimeter of A B C, we sum up the sides of the triangle
i.e.
[tex]Perimeter = A B + B\ C + A\ C[/tex]
AB is given in the question already.
So, we need to calculate B F and F C
To solve for BF, we consider triangle B F C
Using Pythagoras Theorem, we have:
[tex]B\ C^2 = B\ F^2 + F\ C^2[/tex]
Substitute values for BF and FC;
[tex]B\ C^2 = 9^2 + 5.6^2[/tex]
[tex]B\ C^2 = 81 + 31.36[/tex]
[tex]B\ C^2 = 112.36[/tex]
[tex]B\ C^2= \sqrt{112.36[/tex]
[tex]B\ C = 10.6[/tex]
Next, we calculate A C.
To calculate A C, we need to calculate A F, considering triangle B F A
Using Pythagoras Theorem, we have:
[tex]A\ B^2 = B\ F^2 + A\ F^2[/tex]
Substitute values for B F and A B;
[tex]13^2 = 9^2 + A\ F^2[/tex]
[tex]169= 81 + A\ F^2[/tex]
[tex]A\ F^2 = 169 - 81[/tex]
[tex]A\ F^2 = 88[/tex]
[tex]A\ F = \sqrt{88[/tex]
[tex]A\ F = 9.4[/tex]
Since F lies on line A C:
[tex]A\ C = A\ F + F\ C[/tex]
[tex]A\ C = 9.4 + 5.6[/tex]
[tex]A\ C = 15.0[/tex]
Recall that:
[tex]Perimeter = A\ B + B\ C + A\ C[/tex]
[tex]Perimeter = 13 + 10.6 + 15.0[/tex]
[tex]Perimeter = 38.6[/tex]
Hence, the perimeter is 38.6
Given that P is the orthocenter of triangle ABC, applying the properties of an orthocenter of a triangle and the Pythagorean Theorem, each measure and the perimeter of △ABC are:
Recall:
Given that P is the orthocenter of triangle ABC, where,
Perimeter of △ABC = AB + BC + AC
First, we need to find BC and AC.
△BFC is a right triangle, apply Pythagorean theorem to find BC:
[tex]BC = \sqrt{BF^2 + FC^2}[/tex]
[tex]BC = \sqrt{9^2 + 5.6^2}\\\\\mathbf{BC = 10.6}[/tex]
△BFA is a right triangle, apply Pythagorean theorem to find FA:
[tex]FA = \sqrt{AB^2 - BF^2}[/tex]
[tex]FA = \sqrt{13^2 - 9^2}\\\\\mathbf{FA = 9.4}[/tex]
AC = FA + FC
AC = 9.4 + 5.6
AC = 15
Perimeter of △ABC = AB + BC + AC
Perimeter of △ABC = 13 + 10.6 + 15
Perimeter of △ABC = 38.6 units
Therefore, given that P is the orthocenter of triangle ABC, applying the properties of an orthocenter of a triangle and the Pythagorean Theorem, each measure and the perimeter of △ABC are:
Learn more here:
https://brainly.com/question/2515607