Respuesta :

Answer:

[tex]x_1=\mathbf{i}\sqrt{6},\ x_2=-\mathbf{i}\sqrt{6},\ x_3=\sqrt{3},\ x_4=-\sqrt{3}[/tex]

Step-by-step explanation:

Biquadratic Equations

Solve:

[tex]x^4 + 3x^2 - 18 = 0[/tex]

The biquadratic equations are equations of degree 4 without the terms of degree 1 and 3.

Solving such equations requires to express the equation as a second-degree equation with [tex]x^2[/tex] as the variable.

Rewriting the equation:

[tex](x^2)^2 + 3(x^2) - 18 = 0[/tex]

The quadratic equation can be factored as:

[tex](x^2+6)(x^2-3)=0[/tex]

It leads to two equations:

[tex]x^2+6=0[/tex]

[tex]x^2-3=0[/tex]

The first equation has imaginary roots. Solving for x:

[tex]x^2=-6[/tex]

[tex]x=\pm\sqrt{-6}[/tex]

[tex]x_1=\mathbf{i}\sqrt{6}[/tex]

[tex]x_2=-\mathbf{i}\sqrt{6}[/tex]

Where

[tex]\mathbf{i}=\sqrt{-1}[/tex]

The second equation has two real roots:

[tex]x^2-3=0[/tex]

[tex]x^2=3[/tex]

[tex]x=\pm\sqrt{3}[/tex]

[tex]x_3=\sqrt{3}[/tex]

[tex]x_4=-\sqrt{3}[/tex]

The roots are:

[tex]\mathbf{x_1=\mathbf{i}\sqrt{6},\ x_2=-\mathbf{i}\sqrt{6},\ x_3=\sqrt{3},\ x_4=-\sqrt{3}}[/tex]