Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

In the lower triangle, one of the angles of which is 45 degrees, we know:

In the triangle, the side facing the angle 45° is √2 / 2 times the hypothenuse.

Thus ;

[tex]10 = hypothenuse \times \frac{ \sqrt{2} }{2} \\ [/tex]

[tex]hypothenuse \times \frac{ \sqrt{2} }{2} = 10 \\ [/tex]

Multiply sides by 2

[tex]hypothenuse \times \sqrt{2} = 2 \times 10[/tex]

Divide sides by 2

[tex]hypothenuse = \frac{2 \times 10}{ \sqrt{2} } \\ [/tex]

[tex]hypothenuse = \frac{ \sqrt{2} \times \sqrt{2} \times 10 }{ \sqrt{2} } \\ [/tex]

[tex]hypothenuse = 10 \sqrt{2} [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

The common side of the triangles is hypothenuse for both.

[tex]hypothenuse \times \cos(60) = x[/tex]

[tex]10 \sqrt{2} \times \frac{1}{2} = x \\ [/tex]

[tex]x = \frac{2 \times 5 \sqrt{2} }{2} \\ [/tex]

[tex]x = 5 \sqrt{2} [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

The correct answer is the Third Option .

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️