The length of human pregnancies from conception to birth varies according to a distribution that is approximately Normal with mean 266 days and standard deviation 16 days. The probability that the average pregnancy length for nine randomly chosen women exceeds 268 days is about a) 0.35 b) 0.40 c) 0.65 d) 0.27

Respuesta :

Answer:

The probability is    [tex]P( \= X > 268 ) =0.35376[/tex]

Step-by-step explanation:

From the question we are told that

   The mean is  [tex]\mu = 266[/tex]

    The standard deviation is  [tex]\sigma = 16[/tex]

Generally the standard error of mean is mathematically represented as

        [tex]\sigma_{\= x} = \frac{\sigma}{\sqrt{n} }[/tex]

=>     [tex]\sigma_{\= x} = \frac{16}{\sqrt{9} }[/tex]

=>     [tex]\sigma_{\= x} = 5.33[/tex]

Generally the probability that the average pregnancy length for nine randomly chosen women exceeds 268 days is mathematically represented as

        [tex]P( \= X > 268 ) = P (\frac{ \= x - \mu }{ \sigma_{\= x}} > \frac{268 - 266}{5.33 } )[/tex]

[tex]\frac{\= X -\mu}{\sigma_{\= x} }  =  Z (The  \ standardized \  value\  of  \ \=  X )[/tex]  

          [tex]P( \= X > 268 ) = P (Z > 0.3752 )[/tex]

From the z table  the area under the normal curve to the right  corresponding to  0.3752  is

P (Z  >  0.3752)   =    0.35376

So  

       [tex]P( \= X > 268 ) =0.35376[/tex]