For its beef stew, Betty Moore Company uses aluminum containers that have the form of right circular cylinders. Find the radius and height of a container if it has a capacity of 44 in.3 and is constructed using the least amount of metal. (Round your answers to two decimal places.)

Respuesta :

Answer:

[tex]1.91\ \text{in}[/tex]

[tex]3.84\ \text{in}[/tex]

Step-by-step explanation:

V = Volume of cylinder = [tex]44\ \text{in}^3[/tex]

h = Height of cylinder

r = Radius of cylinder

Volume of cylinder is given by

[tex]V=\pi r^2h\\\Rightarrow h=\dfrac{V}{\pi r^2}\\\Rightarrow h=\dfrac{44}{\pi r^2}[/tex]

Total surface area of a cylinder is given by

[tex]S=2\pi r^2+2\pi rh\\\Rightarrow S=2\pi r^2+2\pi r\times\dfrac{44}{\pi r^2}\\\Rightarrow S=2\pi r^2+\dfrac{88}{r}[/tex]

Differentiating with respect to radius

[tex]\dfrac{dS}{dr}=4\pi r-\dfrac{88}{r^2}[/tex]

Equating with zero

[tex]4\pi r-\dfrac{88}{r^2}=0\\\Rightarrow 4\pi r=\dfrac{88}{r^2}\\\Rightarrow r^3=\dfrac{88}{4\pi}\\\Rightarrow r=(\dfrac{22}{\pi})^{\dfrac{1}{3}}\\\Rightarrow r=1.91\ \text{in}[/tex]

Double derivative of S

[tex]\dfrac{d^2S}{dr^2}=4\pi+176>0[/tex]

So [tex]r[/tex] is minimum at [tex]\dfrac{dS}{dr}=0[/tex]

[tex]h=\dfrac{44}{\pi r^2}=\dfrac{44}{\pi 1.91^2}\\\Rightarrow h=3.84\ \text{in}[/tex]

So the radius and height of the cylinder is [tex]1.91\ \text{in}[/tex] and [tex]3.84\ \text{in}[/tex] respectively such that the least amount of metal is used.