Answer:
The value is [tex]\theta =407.3 \ radian[/tex]
Explanation:
From the question we are told that
The angular acceleration is [tex]\alpha = (7t + 8) \ rad/ s^2[/tex]
The first time is [tex]t_1 = 1.00 \ s[/tex]
The second time [tex]t_2 = 6.10 \ s[/tex]
Generally the angular velocity is mathematically represented as
[tex]w = \int\limits {\alpha } \, dt[/tex]
=> [tex]w = \int\limits {7t + 8 } \, dt[/tex]
=> [tex]w =\frac{ 7t^2}{2} + 8 t[/tex]
Generally the angular displacement is mathematically represented as
[tex]\theta = \int\limits^{t_2}_{t_1} { w} \, dt[/tex]
=> [tex]\theta = \int\limits^{t_2}_{t_1} { \frac{7t^2}{2} + 8t } \, dt[/tex]
=> [tex]\theta = { \frac{7t^3}{6} + \frac{8t^2}{2} } | \left \ t_2} \atop {t_1}} \right.[/tex]
=> [tex]\theta = { \frac{7t^3}{6} + 4t^2} } | \left \ 6.10} \atop {1}} \right.[/tex]
=> [tex]\theta =[ { \frac{7}{6}[6.10 ]^3 + 4[6.10]^2} } ] -[ { \frac{7}{6}[1 ]^3 + 4[1]^2} } ][/tex]
=> [tex]\theta =407.3 \ radian[/tex]