Answer:
0.0544
Step-by-step explanation:
From the given information;
The population proportion of the voters that would support the ballot measures in region A = 0.46
The random sample n = 400 voters
The required probability can therefore be computed as follows:
[tex]P[p_1>0.5] = P \bigg [ \dfrac{p_1-P_1}{\sqrt{\dfrac{P_1(1-P_1)}{n_1}}}>\dfrac{0.5-0.46}{\sqrt{\dfrac{0.46(1-0.46)}{400}}} \bigg][/tex]
[tex]P[p_1>0.5] = P \bigg [ Z>\dfrac{0.04}{\sqrt{\dfrac{0.46(0.54)}{400}}} \bigg][/tex]
[tex]P[p_1>0.5] = P \bigg [ Z>\dfrac{0.04}{\sqrt{6.21\times 10^{-4}}} \bigg][/tex]
[tex]P[p_1>0.5] = P \bigg [ Z>1.605 \bigg][/tex]
[tex]P[p_1>0.5] = 1- P [ Z<1.605 ][/tex]
Using the Excel Function =NORMDIST(1.605)
[tex]P[p_1>0.5] = 1- 0.9456[/tex]
[tex]P[p_1>0.5] =0.0544[/tex]
Therefore, the required probability = 0.0544