Answer:
F(x) = 3·x² vertex (0, 0) axis x = 0 x-int (0, 0) y-int (0, 0) min minimum value (0, 0) domain (x ∈ R) range (f(x) ∈ R+)
Step-by-step explanation:
The given function is f(x) = 3·x²
The given parabola in vertex form y = a(x - h)² + k
Where;
(h, k) = The vertex
By comparison, we have;
h = 0
k - 0
Therefore;
1) The vertex = (0, 0)
2) The axis of symmetry = The line x = 0
3) The x-intercept = The vertex = (0, 0)
4) The y-intercept = The vertex = (0, 0)
5) The minimum value = The vertex = (0, 0)
6) The domain = All real numbers (x ∈ R)
7) The range = All positive real numbers including 0 (f(x) ∈ R+)