Answer:
[tex]L" = (-6,0)[/tex] [tex]M" = (-8,-6)[/tex] [tex]N" = (-4,-2)[/tex]
Step-by-step explanation:
Given
[tex]L = (0,3)[/tex]
[tex]M = (3,4)[/tex]
[tex]N = (1,2)[/tex]
Required
Determine the new coordinates of L, M and N
Applying (a): 180 degrees rotation about the origin
When [tex](x,y)[/tex] is rotated about 180 degrees, the new point becomes [tex](-y,-x)[/tex]
So:
[tex]L = (0,3)[/tex] ==> [tex]L' = (-3,0)[/tex]
[tex]M = (3,4)[/tex] ==> [tex]M' = (-4,-3)[/tex]
[tex]N = (1,2)[/tex] ==> [tex]N' = (-2,-1)[/tex]
Applying (b): Dilation of scale factor, 2
The formula to apply here is;
[tex]New = Old * Scale\ Factor[/tex]
So:
[tex]L' = (-3,0)[/tex] becomes:
[tex]L" = L' * 2[/tex]
[tex]L" = (-3,0) * 2[/tex]
[tex]L" = (-6,0)[/tex]
[tex]M' = (-4,-3)[/tex] becomes:
[tex]M" = M' * 2[/tex]
[tex]M" = (-4,-3) * 2[/tex]
[tex]M" = (-8,-6)[/tex]
[tex]N' = (-2,-1)[/tex]
[tex]N" = N' * 2[/tex]
[tex]N" = (-2,-1) * 2[/tex]
[tex]N" = (-4,-2)[/tex]
Hence;
The new coordinates are:
[tex]L" = (-6,0)[/tex]
[tex]M" = (-8,-6)[/tex]
[tex]N" = (-4,-2)[/tex]