Triangle LMN with vertices L(0, 3), M(3, 4), and N(1, 2): a) 180° rotation about the origin b) dilation with scale factor of 2 using the origin as the center

Respuesta :

Answer:

[tex]L" = (-6,0)[/tex]   [tex]M" = (-8,-6)[/tex]   [tex]N" = (-4,-2)[/tex]

Step-by-step explanation:

Given

[tex]L = (0,3)[/tex]

[tex]M = (3,4)[/tex]

[tex]N = (1,2)[/tex]

Required

Determine the new coordinates of L, M and N

Applying (a): 180 degrees rotation about the origin

When [tex](x,y)[/tex] is rotated about 180 degrees, the new point becomes [tex](-y,-x)[/tex]

So:

[tex]L = (0,3)[/tex] ==> [tex]L' = (-3,0)[/tex]

[tex]M = (3,4)[/tex] ==> [tex]M' = (-4,-3)[/tex]

[tex]N = (1,2)[/tex] ==> [tex]N' = (-2,-1)[/tex]

Applying (b): Dilation of scale factor, 2

The formula to apply here is;

[tex]New = Old * Scale\ Factor[/tex]

So:

[tex]L' = (-3,0)[/tex] becomes:

[tex]L" = L' * 2[/tex]

[tex]L" = (-3,0) * 2[/tex]

[tex]L" = (-6,0)[/tex]

[tex]M' = (-4,-3)[/tex] becomes:

[tex]M" = M' * 2[/tex]

[tex]M" = (-4,-3) * 2[/tex]

[tex]M" = (-8,-6)[/tex]

[tex]N' = (-2,-1)[/tex]

[tex]N" = N' * 2[/tex]

[tex]N" = (-2,-1) * 2[/tex]

[tex]N" = (-4,-2)[/tex]

Hence;

The new coordinates are:

[tex]L" = (-6,0)[/tex]

[tex]M" = (-8,-6)[/tex]

[tex]N" = (-4,-2)[/tex]