Respuesta :

Answer:

[tex]x =3[/tex] or [tex]x = 7[/tex]

Step-by-step explanation:

Given

[tex]x^2 - 10x = -21[/tex]

Required

Solve by factoring & quadratic formula

By Factoring:

[tex]x^2 - 10x = -21[/tex]

Equate to 0

[tex]x^2 - 10x +21 = 0[/tex]

Expand:

[tex]x^2 - 7x -3x+21 = 0[/tex]

Factorize:

[tex]x(x-7)-3(x-7) = 0[/tex]

[tex](x-3)(x-7) = 0[/tex]

[tex]x -3 = 0[/tex] or [tex]x - 7 = 0[/tex]

[tex]x =3[/tex] or [tex]x = 7[/tex]

By quadratic

[tex]x^2 - 10x = -21[/tex]

Equate to 0

[tex]x^2 - 10x +21 = 0[/tex]

For

[tex]ax^2 + bx + c = 0[/tex]

x is solved using:

[tex]x = \frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

where

[tex]a = 1[/tex]; [tex]b = -10[/tex]; [tex]c = 21[/tex]

So:

[tex]x = \frac{-(-10)\±\sqrt{(-10)^2-4*1*21}}{2*1}[/tex]

[tex]x = \frac{10\±\sqrt{100-84}}{2}[/tex]

[tex]x = \frac{10\±\sqrt{16}}{2}[/tex]

[tex]x = \frac{10\±4}{2}[/tex]

Split

[tex]x = \frac{10+4}{2}[/tex] or [tex]x = \frac{10-4}{2}[/tex]

[tex]x = \frac{14}{2}[/tex] or [tex]x = \frac{6}{2}[/tex]

[tex]x = 7[/tex] or [tex]x =3[/tex]