Respuesta :
Answer:
Step-by-step explanation:
A linear pair are two given angles whose sum is equal to [tex]180^{o}[/tex].
Let the exterior angle be represented by [tex]x^{o}[/tex], and the three interior angles of the triangle be represented by [tex]a^{o}[/tex], [tex]b^{o}[/tex] and [tex]c^{o}[/tex].
Assume that the vertex angle [tex]c^{o}[/tex] is the linear pair to the exterior angle [tex]x^{o}[/tex].
i.e [tex]x^{o}[/tex] + [tex]c^{o}[/tex] = [tex]180^{o}[/tex] (sum of angles on a straight line)
Thus,
i. [tex]a^{o}[/tex] + [tex]b^{o}[/tex] = [tex]x^{o}[/tex] (sum of two opposite interior angles is equal to an exterior angle)
⇒ [tex]a^{o}[/tex] = [tex]x^{o}[/tex] - [tex]b^{o}[/tex]
Also,
[tex]b^{o}[/tex] = [tex]x^{o}[/tex] - [tex]a^{o}[/tex]
But,
[tex]a^{o}[/tex] + [tex]b^{o}[/tex] + [tex]c^{o}[/tex] = [tex]180^{o}[/tex] (sum of angles in a triangle)
⇒ [tex]c^{o}[/tex] = [tex]180^{o}[/tex] - ([tex]a^{o}[/tex] + [tex]b^{o}[/tex])
and
[tex]a^{o}[/tex] + [tex]b^{o}[/tex] = [tex]180^{o}[/tex] - [tex]c^{o}[/tex]
ii. [tex]a^{o}[/tex] + [tex]b^{o}[/tex] + [tex]c^{o}[/tex] = [tex]180^{o}[/tex] (sum of angles in a triangle)
[tex]a^{o}[/tex] = [tex]180^{o}[/tex] - ([tex]b^{o}[/tex] + [tex]c^{o}[/tex])
Also,
[tex]a^{o}[/tex] + [tex]b^{o}[/tex] = [tex]x^{o}[/tex]
⇒ [tex]b^{o}[/tex] = [tex]x^{o}[/tex] - [tex]a^{o}[/tex]
[tex]c^{o}[/tex] = [tex]180^{o}[/tex] - [tex]x^{o}[/tex]