Complete the equation of the line through (3,-8)(3,−8)left parenthesis, 3, comma, minus, 8, right parenthesis and (6,-4)(6,−4)left parenthesis, 6, comma, minus, 4, right parenthesis.

Respuesta :

Answer:

[tex]y = \frac{4}{3}x - 12[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (3,-8)[/tex]

[tex](x_2,y_2) = (6,-4)[/tex]

Required

Determine the equation

First, we need to determine the slope (m):

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{-4 - (-8)}{6 -3}[/tex]

[tex]m = \frac{-4 +8}{3}[/tex]

[tex]m = \frac{4}{3}[/tex]

Next, we determine the line equation using:

[tex]y - y_1 = m(x - x_1)[/tex]

Where

[tex]m = \frac{4}{3}[/tex]

[tex](x_1,y_1) = (3,-8)[/tex]

[tex]y - (-8) = \frac{4}{3}(x - 3)[/tex]

[tex]y +8 = \frac{4}{3}(x - 3)[/tex]

[tex]y +8 = \frac{4}{3}x - 4[/tex]

[tex]y = \frac{4}{3}x - 4 - 8[/tex]

[tex]y = \frac{4}{3}x - 12[/tex]

The equation of the line that passes through  (3, -8)(6, -4) is y = - 1 / 2 x - 1

The slope intercept equation is as follows:

y = mx + b

where

m = slope

b = y-intercept

Therefore,

The line passes through (3, -8)(6, -4)

m = -4 - 3 / 6 + 8 = -7 / 14 = - 1 / 2

y = - 1 /2 x + b

let's find b using (6, -4)

-4 = - 1 /2 (6) + b

-4 + 3 = b

b = -1

Therefore,

y = - 1 / 2 x - 1

learn more: