A person holds her hand out of an open car window while the car drives through still air at 65 mph. Under standard atmospheric conditions, what is the maximum pressure on her hand? What would be the maximum pressure if the "car" were an Indy 500 racer traveling 200 mph?

Respuesta :

Answer:

[tex]10.8\ \text{lb/ft^2}[/tex]

[tex]101.96\ \text{lb/ft}^2[/tex]

Explanation:

[tex]v_1[/tex] = Velocity of car = 65 mph = [tex]65\times \dfrac{5280}{3600}=95.33\ \text{ft/s}[/tex]

[tex]\rho[/tex] = Density of air = [tex]0.00237\ \text{slug/ft}^3[/tex]

[tex]v_2=0[/tex]

[tex]P_1=0[/tex]

[tex]h_1=h_2[/tex]

From Bernoulli's law we have

[tex]P_1+\dfrac{1}{2}\rho v_1^2+h_1=P_2+\dfrac{1}{2}\rho v_2^2+h_2\\\Rightarrow P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 95.33^2\\\Rightarrow P_2=10.8\ \text{lb/ft^2}[/tex]

The maximum pressure on the girl's hand is [tex]10.8\ \text{lb/ft^2}[/tex]

Now [tex]v_1[/tex] = 200 mph = [tex]200\times \dfrac{5280}{3600}=293.33\ \text{ft/s}[/tex]

[tex]P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 293.33^2\\\Rightarrow P_2=101.96\ \text{lb/ft}^2[/tex]

The maximum pressure on the girl's hand is [tex]101.96\ \text{lb/ft}^2[/tex]