Respuesta :

Answer:

BD  is 2x1

CA is 2x1

BC is 2x3

(i think)

Step-by-step explanation:

Several operations such as arithmetic operations can be performed on matrices.

  • [tex]\mathbf{BD = 2 \times 1}[/tex].
  • [tex]\mathbf{CA = 1 \times 2}[/tex].
  • [tex]\mathbf{DC = 2 \times 3}[/tex]

The product of a matrix is represented as:

[tex]\mathbf{(m \times n) \cdot (n \times k) = (m \times k)}[/tex]

The dimension of the matrices are given as:

  • [tex]\mathbf{A = 3 \times 2}[/tex].
  • [tex]\mathbf{B = 2 \times 2}[/tex].
  • [tex]\mathbf{C = 1 \times 3}[/tex].
  • [tex]\mathbf{D = 2 \times 1}[/tex].

(a) Product BD

We have:

[tex]\mathbf{B = 2 \times 2}[/tex]

[tex]\mathbf{D = 2 \times 1}[/tex]

So, the product of BD is:

[tex]\mathbf{BD = B \times D}[/tex]

This gives

[tex]\mathbf{BD = (2 \times 2) \cdot (2 \times 1)}[/tex]

Using: [tex]\mathbf{(m \times n) \cdot (n \times k) = (m \times k)}[/tex]

We have:

[tex]\mathbf{BD = 2 \times 1}[/tex]

(b) Product CA

We have:

[tex]\mathbf{A = 3 \times 2}[/tex]

[tex]\mathbf{C = 1 \times 3}[/tex]

So, the product of CA is:

[tex]\mathbf{CA= C \times A}[/tex]

This gives

[tex]\mathbf{CA = (1 \times 3) \cdot (3 \times 2)}[/tex]

Using: [tex]\mathbf{(m \times n) \cdot (n \times k) = (m \times k)}[/tex]

We have:

[tex]\mathbf{CA = 1 \times 2}[/tex]

(c) Product DC

We have:

[tex]\mathbf{C = 1 \times 3}[/tex]

[tex]\mathbf{D = 2 \times 1}[/tex]

So, the product of DC is:

[tex]\mathbf{DC= D \times C}[/tex]

This gives

[tex]\mathbf{DC = (2 \times 1) \cdot (1 \times 3)}[/tex]

Using: [tex]\mathbf{(m \times n) \cdot (n \times k) = (m \times k)}[/tex]

We have:

[tex]\mathbf{DC = 2 \times 3}[/tex]

Read more about product of matrices at:

https://brainly.com/question/24810141