Step-by-step explanation:
Given problem:
|4x+3|<5
From the problem, we need to find x;
|4x+3|<5
To solve absolute values problem like this, use the approach below;
|4x+3|<5
4x + 3 < 5 or -(4x + 3) < 5
4x < 5 - 3 or -4x - 3 < 5
4x < 2 or -4x < 5 + 3
x = [tex]\frac{2}{4}[/tex] or -4x < 8
x = [tex]\frac{1}{2}[/tex] or x > [tex]\frac{8}{-4}[/tex] = -2
(when dividing or multiplying by a negative value, the sign changes)