Two angles areComplementary One angle measures (2x-16) degrees. The other measures (x +1) degrees. What is the value of the larger angle?

Respuesta :

Given:

Two angles are Complementary.

One angle measures (2x-16) degrees.

The other measures (x +1) degrees.

To find:

The value of the larger angle.

Solution:

Let,

[tex]\angle 1=(2x-16)^\circ[/tex]

[tex]\angle 2=(x+1)^\circ[/tex]

We know that, sum of two complementary angles is 90 degrees. Since, given angles are complementary angles, therefore

[tex]\angle 1+\angle 2=90^\circ[/tex]

[tex](2x-16)^\circ+(x+1)^\circ=90^\circ[/tex]

[tex](3x-15)^\circ=90^\circ[/tex]

Now,

[tex]3x-15=90[/tex]

[tex]3x=90+15[/tex]

[tex]3x=105[/tex]

Divide both sides by 3.

[tex]x=35[/tex]

The value of x is 35.

[tex]\angle 1=(2(35)-16)^\circ[/tex]

[tex]\angle 1=(70-16)^\circ[/tex]

[tex]\angle 1=(54)^\circ[/tex]

And,

[tex]\angle 2=(35+1)^\circ[/tex]

[tex]\angle 2=(36)^\circ[/tex]

Therefore, the value of the larger angle is 54 degrees.