Respuesta :

Given:

The two functions are

[tex]f(x)=5x+1[/tex]

[tex]g(x)=\dfrac{x}{5}-\dfrac{1}{5}[/tex]

To find:

The presentation which establishes that the functions are inverse functions.

Solution:

Two functions f(x) and g(x) are inverse of each other, if

[tex]f(g(x))=g(f(x))=x[/tex]

We have,

[tex]f(x)=5x+1[/tex]

[tex]g(x)=\dfrac{x}{5}-\dfrac{1}{5}[/tex]

Now,

[tex]g(f(x))=\dfrac{5x+1}{5}-\dfrac{1}{5}[/tex]

[tex]g(f(x))=\dfrac{5x}{5}+\dfrac{1}{5}-\dfrac{1}{5}[/tex]

[tex]g(f(x))=x[/tex]

Similarly,

[tex]f(g(x))=5\left(\dfrac{x}{5}-\dfrac{1}{5}\right)+1[/tex]

[tex]f(g(x))=x-1+1[/tex]

[tex]f(g(x))=x[/tex]

Since, [tex]f(g(x))=g(f(x))=x[/tex], therefore, the given functions are inverse of each other.

Hence, the correct option is C.