Answer:
Nearest, the revolutions per minute will be 29.
Explanation:
Given that,
Radius of circle = 1 m
Acceleration a =g
We know that,
Angular frequency is defined as,
[tex]\omega=2\pi n[/tex]
Where, n = number of revolutions in one second
We need to calculate the revolutions in one second
Using formula of centripetal acceleration
[tex]a=\omega^2r[/tex]
Put the value of a and ω
[tex]g=(2\pi n)^2r[/tex]
[tex]n=\sqrt{\dfrac{g}{r}}\times\dfrac{1}{2\pi}[/tex]
Put the value into the formula
[tex]n=\sqrt{\dfrac{9.8}{1}}\times\dfrac{1}{2\pi}[/tex]
[tex]n=0.49[/tex]
We need to calculate the revolutions per minute
Using value for the revolutions per minute
[tex]n=0.49\times60[/tex]
[tex]n=29.4[/tex]
Hence, Nearest, the revolutions per minute will be 29.