Find a point on the ellipsoid x2+y2+4z2=36x2+y2+4z2=36 where the tangent plane is perpendicular to the line with parametric equations

Respuesta :

Answer:

A point on the ellipsoid is (-4,2,2) or (4,-2,-2)

Step-by-step explanation:

Given equation of ellipsoid f(x,y,z) :[tex]x^2+y^2+4z^2=36[/tex]

Parametric equations:

x=-4t-1

y=2t+1

z=8t+3

Finding the gradient of function

[tex]\nabla f(x,y,z)=<\frac{\partial{f}}{\partial{x}},\frac{\partial{f}}{\partial{y}},\frac{\partial{f}}{\partial{z}}>\\\nabla f(x,y,z)=<2x,-2y,8x>[/tex]

So, The directions vectors=(-4,2,8)

Now the line is perpendicular to plane when direction vector is parallel to the normal vector of line

[tex]\nablaf(x,y,z)=(2x,2y,8z)=\lambda(-4,2,8)[/tex]

So, [tex]2x=-4\lambda[/tex]

[tex]\Rightarrow x=-2\lambda[/tex]

[tex]2y=2\lambda\\\Rightarrow y=\lambda\\8z=8\lambda\\\Rightarrow z=\lambda[/tex]

Substitute the value of x , y and z in the ellipsoid equation

[tex](2\lambda)^2+(\lambda)^2+4(\lambda)^2=36\\9(\lambda)^2=36\\\lambda^2=4\\\lambda=\pm 2[/tex]

With [tex]\lambda = 2[/tex]

x=-2(2)=-4

y=2

z=2

With[tex]\lambda =- 2[/tex]

x=-2(-2)=4

y=-2

z=-2

Hence a point on the ellipsoid is (-4,2,2) or (4,-2,-2)