Respuesta :

Answer:

The coordinates of b are: B=(-7,-8)

Step-by-step explanation:

We are given the coordinates of the midpoint of [tex]\overline{\text{AB}}[/tex] as M=(-5,-2).

We are also given the coordinates of A=(-3,4). The question requires us to calculate the coordinates of the other endpoint B.

Let (xb,yb) the coordinates of B. The coordinates of the midpoint can be calculated as follows:

[tex]\displaystyle x_m=\frac{x_a+x_b}{2}[/tex]

[tex]\displaystyle y_m=\frac{y_a+y_b}{2}[/tex]

We know xa=-3 and xm=-5. Solve the first equation for xb:

[tex]2x_m=x_a+x_b\Rightarrow x_b=2x_m-x_a[/tex]

Substituting:

[tex]x_b=2\cdot (-5)-(-3)=-10+3[/tex]

[tex]x_b=-7[/tex]

We can solve the second equation for xb and get:

[tex]y_b=2y_m-y_a[/tex]

Since ya=4 and ym=-2, then:

[tex]y_b=2\cdot (-2)-(4)=-4-4[/tex]

[tex]y_b=-8[/tex]

Thus, the coordinates of b are: B=(-7,-8)

xflees

Answer:

(−2,−3)

Step-by-step explanation:

delta math