Find the values of R, P, and Q that make the polynomial addition problem true. Write your answer in this order: R, P, Q. \left(12x^5+Rx^4+Px^2-5\right)+\left(-6x^5-4x^4+13x+Q\right)=6x^5+3x^4+9x^2+13x+7 (12x 5 +Rx 4 +Px 2 −5)+(−6x 5 −4x 4 +13x+Q)=6x 5 +3x 4 +9x 2 +13x+7

Respuesta :

Given:

[tex]\left(12x^5+Rx^4+Px^2-5\right)+\left(-6x^5-4x^4+13x+Q\right)=6x^5+3x^4+9x^2+13x+7[/tex]

To find:

The values of R, P and Q.

Solution:

We have,

[tex]\left(12x^5+Rx^4+Px^2-5\right)+\left(-6x^5-4x^4+13x+Q\right)=6x^5+3x^4+9x^2+13x+7[/tex]

On combining like terms, we get

[tex](12x^5-6x^5)+(Rx^4-4x^4)+Px^2+13x+(Q-5)=6x^5+3x^4+9x^2+13x+7 [/tex]

[tex]6x^5+(R-4)x^4+Px^2+13x+(Q-5)=6x^5+3x^4+9x^2+13x+7 [/tex]

On comparing the coefficients of [tex]x^4[/tex], we get

[tex]R-4=3[/tex]

[tex]R=3+4[/tex]

[tex]R=7[/tex]

On comparing the coefficients of [tex]x^2[/tex], we get

[tex]P=9[/tex]

on comparing the constants, we get

[tex]Q-5=7[/tex]

[tex]Q=7+5[/tex]

[tex]Q=12[/tex]

Therefore, [tex]R=7,P=9[/tex] and [tex]Q=12[/tex].