A freshly prepared sample of radioactive isotope has an activity of 10 mCi. After 4 hours, its activity is 8 mCi. Find: (a) the decay constant  and half-life T1/2; (b) How many atoms of the isotope were contained in the freshly prepared sample? (c) What is the sample's activity 30 hours after it is prepared?

Respuesta :

Answer:

(a). The decay constant is [tex]1.55\times10^{-5}\ s^{-1}[/tex]

The half life is 11.3 hr.

(b). The value of N₀ is [tex]2.38\times10^{11}\ nuclei[/tex]

(c). The sample's activity is 1.87 mCi.

Explanation:

Given that,

Activity [tex]R_{0}=10\ mCi[/tex]

Time [tex]t_{1}=4\ hours[/tex]

Activity R= 8 mCi

(a). We need to calculate the decay constant

Using formula of activity

[tex]R=R_{0}e^{-\lambda t}[/tex]

[tex]\lambda=\dfrac{1}{t}ln(\dfrac{R_{0}}{R})[/tex]

Put the value into the formula

[tex]\lambda=\dfrac{1}{4\times3600}ln(\dfrac{10}{8})[/tex]

[tex]\lambda=0.0000154\ s^{-1}[/tex]

[tex]\lambda=1.55\times10^{-5}\ s^{-1}[/tex]

We need to calculate the half life

Using formula of half life

[tex]T_{\dfrac{1}{2}}=\dfrac{ln(2)}{\lambda}[/tex]

Put the value into the formula

[tex]T_{\dfrac{1}{2}}=\dfrac{ln(2)}{1.55\times10^{-5}}[/tex]

[tex]T_{\dfrac{1}{2}}=44.719\times10^{3}\ s[/tex]

[tex]T_{\dfrac{1}{2}}=11.3\ hr[/tex]

(b). We need to calculate the value of N₀

Using formula of [tex]N_{0}[/tex]

[tex]N_{0}=\dfrac{3.70\times10^{6}}{\lambda}[/tex]

Put the value into the formula

[tex]N_{0}=\dfrac{3.70\times10^{6}}{1.55\times10^{-5}}[/tex]

[tex]N_{0}=2.38\times10^{11}\ nuclei[/tex]

(c). We need to calculate the sample's activity

Using formula of activity

[tex]R=R_{0}e^{-\lambda\times t}[/tex]

Put the value intyo the formula

[tex]R=10e^{-(1.55\times10^{-5}\times30\times3600)}[/tex]

[tex]R=1.87\ mCi[/tex]

Hence, (a). The decay constant is [tex]1.55\times10^{-5}\ s^{-1}[/tex]

The half life is 11.3 hr.

(b). The value of N₀ is [tex]2.38\times10^{11}\ nuclei[/tex]

(c). The sample's activity is 1.87 mCi.