Answer:
A. [tex] (4n + 22) + (8n - 10) = 180 [/tex]
B. [tex] n = 14 [/tex]
C. 78° and 102°
Step-by-step explanation:
A. The relationship between the two angles that are a linear pair is: their sum gives us 180°. That is:
[tex] (4n + 22) + (8n - 10) = 180 [/tex]
B. [tex] (4n + 22) + (8n - 10) = 180 [/tex]
Solve for n.
[tex] 4n + 22 + 8n - 10 = 180 [/tex]
Collect like terms
[tex] 12n + 12 = 180 [/tex]
Subtract 12 from both sides
[tex] 12n + 12 - 12 = 180 - 12 [/tex]
[tex] 12n = 168 [/tex]
Divide both sides by 12
[tex] \frac{12n}{12} = \frac{168}{12} [/tex]
[tex] n = 14 [/tex]
C. Plug in the value of 14 to get the measurement of both angles
[tex] (4n + 22) = 4(14) + 22 = 56 + 22 = 78 [/tex]
[tex] (8n - 10) = 8(14) - 10 = 112 - 10 = 102 [/tex]