Respuesta :

Answer:

[tex]\displaystyle g^{-1}(x)=\frac{-7+2x}{x-2}[/tex]

Step-by-step explanation:

We are given the function:

[tex]\displaystyle g(x)=-\frac{3}{x-2}+2[/tex]

Let's find the inverse of g.

Call y=g(x):

[tex]\displaystyle y=-\frac{3}{x-2}+2[/tex]

We need to solve for x. Multiply both sides by x-2 to eliminate denominators:

[tex]y(x-2)=-3+2(x-2)[/tex]

Operate:

[tex]yx-2y=-3+2x-4[/tex]

Collect the x's to the left side and the rest to the right side of the equation:

[tex]yx-2x=-3-4+2y[/tex]

Factor the left side and operate on the right side:

[tex]x(y-2)=-7+2y[/tex]

Solve for x:

[tex]\displaystyle x=\frac{-7+2y}{y-2}[/tex]

Interchange variables:

[tex]\displaystyle y=\frac{-7+2x}{x-2}[/tex]

Call y as the inverse function:

[tex]\boxed{\displaystyle g^{-1}(x)=\frac{-7+2x}{x-2}}[/tex]