Evaluate the piecewise defined function at the indicated values.
{x² + 4x if x <equal/greater to -1
f(x) = { x if - 1<x< equal/greater to 1
{-1 x > 1
f(-2)=
f(-3/2)=
f(-1) =
f(0) = 0
f(25) =​

Respuesta :

Given:

Consider the piecewise function is

[tex]f(x)=\left \{\begin{matrix}x^2+4x,\text{ if } x\leq -1\\ x, \text{ if }-1<x\leq 1\\-1,\text{ if }x>1\end{Matrix}\right.[/tex]

To find:

The value of the function at indicated values.

Solution:

We know that, [tex]-2,-\dfrac{3}{2},-1[/tex] are less than or equal to -1. So, for these values the function is [tex]f(x)=x^2+4x[/tex].

For x=-2,

[tex]f(-2)=(-2)^2+4(-2)[/tex]

[tex]f(-2)=4-8[/tex]

[tex]f(-2)=-4[/tex]

Similarly,

For [tex]x=-\dfrac{3}{2}[/tex].

[tex]f(-\dfrac{3}{2})=(-\dfrac{3}{2})^2+4(-\dfrac{3}{2})=-\dfrac{15}{4}[/tex]

For [tex]x=-1[/tex].

[tex]f(-1)=(-1)^2+4(-1)=-3[/tex]

We know that, 0 is lies between -1 and 1. So, for this values the function is [tex]f(x)=x[/tex].

For x=0,

[tex]f(0)=0[/tex]

We know that, 25 is greater than 1. So, for this values the function is [tex]f(x)=-1[/tex].

For x=25,

[tex]f(25)=-1[/tex]

Therefore, the required values are, [tex]f(-2)=-4, f(-\dfrac{3}{2})=-\dfrac{15}{4},f(-1)=-3,f(0)=0,f(25)=-1[/tex].