Given:
Consider the below figure attached with this question.
Angles of a triangle are x, y and z.
To find:
The values of x, y and z.
Solution:
If two angles are linear pair, then their sum is 180 degrees.
[tex]y+(3x+5)=180[/tex]
[tex]y=180-3x-5[/tex]
[tex]y=175-3x[/tex]
Similarly,
[tex]z+(3x-5)=180[/tex]
[tex]z=180-3x+5[/tex]
[tex]z=185-3x[/tex]
According the the angle sum property, the sum of all angles of a triangle is 180 degrees.
[tex]x+y+z=180[/tex]
[tex]x+(175-3x)+(185-3x)=180[/tex]
[tex]-5x+360=180[/tex]
[tex]-5x=180-360[/tex]
[tex]-5x=-180[/tex]
Divide both sides by -5.
[tex]x=36[/tex]
The value of x is 36.
[tex]y=175-3(36)[/tex]
[tex]y=175-(108)[/tex]
[tex]y=67[/tex]
Now,
[tex]z=185-3(36)[/tex]
[tex]z=185-108[/tex]
[tex]z=77[/tex]
Therefore, the values of x, y and z are 36, 67 and 77 respectively.