Find the values of​ x, y, and z in the triangle to the right. A triangle has angles labeled as follows: lower left, x degrees; top, y degrees; lower right, z degrees. A ray extends the left side of the triangle and the angles labeled y degrees and (3 x plus 5) degrees form a straight angle. Another ray extends the bottom side of the triangle and the angles labeled z degrees and (3 x minus 5) degrees form a straight angle. X degrees y degrees z degrees left parenthesis 3 x plus 5 right parenthesis degrees left parenthesis 3 x minus 5 right parenthesis degrees

Respuesta :

Given:

Consider the below figure attached with this question.

Angles of a triangle are x, y and z.

To find:

The values of x, y and z.

Solution:

If two angles are linear pair, then their sum is 180 degrees.

[tex]y+(3x+5)=180[/tex]

[tex]y=180-3x-5[/tex]

[tex]y=175-3x[/tex]

Similarly,

[tex]z+(3x-5)=180[/tex]

[tex]z=180-3x+5[/tex]

[tex]z=185-3x[/tex]

According the the angle sum property, the sum of all angles of a triangle is 180 degrees.

[tex]x+y+z=180[/tex]

[tex]x+(175-3x)+(185-3x)=180[/tex]

[tex]-5x+360=180[/tex]

[tex]-5x=180-360[/tex]

[tex]-5x=-180[/tex]

Divide both sides by -5.

[tex]x=36[/tex]

The value of x is 36.

[tex]y=175-3(36)[/tex]

[tex]y=175-(108)[/tex]

[tex]y=67[/tex]

Now,

[tex]z=185-3(36)[/tex]

[tex]z=185-108[/tex]

[tex]z=77[/tex]

Therefore, the values of x, y and z are 36, 67 and 77 respectively.

Ver imagen erinna