Let f and g be the functions defined by f(t) = 2t2 and g(t) = t3 + 4t.
1) Determine f'(t) and g′(t).
2) Let p(t) = 2t2 (t3 + 4t) and observe that p(t) = f(t) ⋅ g(t). Re-write the formula for p by distributing the 2t2 term. Then, compute p′(t) using the sum and constant multiple rules.
3) p′(t) = f′(t) ⋅ g′(t).
A. True
B. False
4) Let q(t) = t3 + 4t2/2t2 and observe that q(t) = g(t)/f(t). Rewrite the formula for q by dividing each term in the numerator by the denominator and simplify to write q as a sum of constant multiples of powers of t. Then, compute q′(t) using the sum and constant multiple rules.
5) q′(t) = g′(t)/f'(t).
A. True
B. False

Respuesta :

Answer:

1) [tex]f'(t)=4t,\ g'(t)=3t^2+4[/tex]

2) [tex]p(t) =2t^5+8t^3[/tex]

[tex]p'(t)=10t^4+24t^2[/tex]

3) False

4)[tex]q(t) =\dfrac{1}{2}t+2t^{-1}[/tex]

[tex]q'(t)=\dfrac{1}{2}-\dfrac{2}{t^2}[/tex]

5) False

Step-by-step explanation:

Given that:

[tex]f(t) = 2t^2[/tex] and [tex]g(t) = t^3 + 4t[/tex]

Formula:

[tex]1. \dfrac{d}{dx}x^n=nx^{n-1}[/tex]

[tex]2. \dfrac{d}{dx}C.f(x)=C.f'(x)\ \{\text{C is a constant}\}[/tex]

1) Using above formula:

[tex]f'(t)=2\times 2 t^{2-1}=4t[/tex]

[tex]g'(t)=3t^{3-1}+4\times 1 t^{1-1}=3t^2+4[/tex]

2) [tex]p(t) =2t^2(t^3+4t)[/tex]

Rewriting the formula by distributing the [tex]2t^2[/tex] term:

[tex]p(t) =2t^2.t^3+2t^2.4t=2t^5+8t^3[/tex]

[tex]p'(t) = 10t^4+24t^2[/tex]

3) By using answers of part (1):

[tex]f'(t).g'(t)=12t^3+16t[/tex]

[tex]p'(t) = 10t^4+24t^2[/tex]

Therefore it is False that [tex]p'(t) = f'(t).g'(t)[/tex]

4) [tex]q(t)=\dfrac{t^3+4t}{2t^2}[/tex]

Writing by distributing:

[tex]q(t)=\dfrac{t^3}{2t^2}+\dfrac{4t}{2t^2}\\\Rightarrow q(t) =\dfrac{t}{2}+\dfrac{2}{t}\\\Rightarrow q(t) =\dfrac{1}{2}t+2t^{-1}[/tex]

Using the formula:

[tex]q'(t)=\dfrac{1}{2}t^{1-1}+2\dfrac{-1}{t^2}\\\Rightarrow q'(t)=\dfrac{1}{2}-\dfrac{2}{t^2}[/tex]

(5)By using answers in part (1):

[tex]\dfrac{g'(t)}{f'(t)}=\dfrac{3t^2+4}{4t}=\dfrac{3}{4}t+\dfrac{1}t[/tex]

[tex]q'(t)=\dfrac{1}{2}-\dfrac{2}{t^2}[/tex]

Therefore, it is False that:

[tex]q'(t)=\dfrac{g'(t)}{f'(t)}[/tex]