Respuesta :

Answer:

The smallest solution is x=-1

Step-by-step explanation:

Quadratic Equation

We have:

[tex]f(x)=2x+1[/tex]

[tex]g(x)=-(x-1)^2+3[/tex]

We'll find the solutions of f(x)=g(x), or:

[tex]2x+1=-(x-1)^2+3[/tex]

Operating:

[tex]2x+1=-(x^2-2x+1)+3[/tex]

[tex]2x+1=-x^2+2x-1+3[/tex]

Rearranging all terms on the left side:

[tex]2x+1+x^2-2x+1-3=0[/tex]

Simplifying:

[tex]x^2-1=0[/tex]

Since the term with the x is missing, we can solve for x:

[tex]x^2=1\qquad\Rightarrow x=\sqrt{1}=\pm 1[/tex]

There are two solutions:

x=1, x=-1

The smallest solution is x=-1