Respuesta :
Answer:
The other endpoint is (9, −6)
Step-by-step explanation:
(x1,y1)=(3,2) and M=(6,−2)
x1+x22=x and y1+y22=y
3+x22=6 and 2+y22=−2 ←×2
3+x2=12 and 2+y2=−4
x2=9 and y2=−6
The coordinates of the other endpoint of the line segment are [tex]Y(x,y) = (-10, 11)[/tex].
Vectorially speaking, the midpoint of a line segment is determined by the following expression:
[tex]M(x,y) = \frac{1}{2}\cdot X(x,y) + \frac{1}{2}\cdot Y(x,y)[/tex] (1)
Where:
- [tex]M(x,y)[/tex] - Midpoint.
- [tex]X(x,y)[/tex], [tex]Y(x,y)[/tex] - Endpoints of the line segment.
If we know that [tex]M(x,y) = (-3, 2)[/tex] and [tex]X(x,y) = (4, -7)[/tex], then the coordinates of the other endpoint is:
[tex]\frac{1}{2}\cdot Y(x,y) = M(x,y) -\frac{1}{2}\cdot X(x,y)[/tex]
[tex]Y(x,y) = 2\cdot M(x,y) -X(x,y)[/tex]
[tex]Y(x,y) = 2\cdot (-3,2)-(4,-7)[/tex]
[tex]Y(x,y) = (-6, 4) - (4, -7)[/tex]
[tex]Y(x,y) = (-10, 11)[/tex]
The coordinates of the other endpoint of the line segment are [tex]Y(x,y) = (-10, 11)[/tex].
We kindly invite to check this question on midpoints: https://brainly.com/question/17506315